Stack Using Linked List Data Structure
Definition
A stack is a linear data structure that follows the Last In, First Out (LIFO) principle. In a linked list implementation of a stack, each element is represented by a node, which is connected sequentially. The top of the stack is represented by the head of the linked list.
Operations
1. Push: Add an element to the top of the stack (i.e., insert a node at the beginning of the linked list).
2. Pop: Remove and return the top element from the stack (i.e., delete the head node of the linked list).
3. Peek/Top: Return the top element without removing it (i.e., return the data of the head node).
4. isEmpty: Check if the stack is empty (i.e., check if the head node is null).
Pros and Cons
Pros:
· Dynamic Size: The stack can grow and shrink as needed, so there is no need to define a fixed size.
· Efficient Memory Usage: Memory is allocated as needed, so no wasted space exists.
· No Overflow: There is no risk of overflow unless the system runs out of memory.
Cons:
· Memory Overhead: Each element in the stack requires additional memory for the pointer/reference.
· Complexity: Linked list operations are generally more complex than array operations due to the use of pointers/references.
· Cache Performance: Linked lists have poorer cache performance compared to arrays because nodes are not stored contiguously in memory.
Applications
· Function Call Management: Used to keep track of function calls and return addresses.
· Expression Evaluation: Used in parsing and evaluating expressions (e.g., converting infix to postfix).
· Undo Mechanism: Used in software applications to keep track of the history of operations for undo functionality.
· Backtracking: Useful in algorithms that require backtracking, such as solving mazes, puzzles, etc.
· Syntax Parsing: Used in compilers for syntax parsing of programming languages.
