Implementation of Single Linked List
// Implementing linked list

#include <stdio.h>
#include <stdlib.h>

struct node
{
 int data;
 struct node *link;
};

struct node *head = NULL;
int count = 0;

void insertAtBegin(int x);
void insertAtEnd(int x);
void insertAtPosition(int x, int pos);
void deleteAtBegin();
void deleteAtEnd();
void deleteAtPosition(int pos);
void display();
void search(int key);

int main()
{
 insertAtBegin(10);
 insertAtBegin(20);
 insertAtBegin(30);
 display();

 insertAtEnd(40);
 insertAtEnd(50);
 insertAtEnd(60);
 display();

 insertAtPosition(35, 2);
 insertAtPosition(0, 5);
 insertAtPosition(65, 7);
 display();

 search(40);
 search(75);

 deleteAtBegin();
 deleteAtBegin();
 display();

 deleteAtEnd();
 deleteAtEnd();
 display();

 deleteAtPosition(4);
 deleteAtPosition(2);
 display();

 return 0;
}

void insertAtBegin(int x)
{
 struct node *new;
 new = (struct node *)malloc(sizeof(struct node));
 new->data = x;
 new->link = head;
 head = new;
 printf("\nInserted %d at the beginning", x);
 count++;
}

void insertAtEnd(int x)
{
 if (head == NULL)
 insertAtBegin(x);
 else
 {
 struct node *temp = head;
 while (temp->link != NULL)
 {
 temp = temp->link;
 }
 struct node *new;
 new = (struct node *)malloc(sizeof(struct node));
 new->data = x;
 new->link = NULL;
 temp->link = new;
 printf("\nInserted %d at the end", x);
 count++;
 }
}

void insertAtPosition(int x, int pos)
{
 if (pos <= 0 || pos > (count + 1))
 {
 printf("Invalid position, insertion not possible");
 return;
 }
 if (pos == 1)
 insertAtBegin(x);
 else if (pos == (count + 1))
 insertAtEnd(x);
 else
 {
 struct node *temp = head;
 for (int i = 1; i < (pos - 1); i++)
 temp = temp->link;
 struct node *new;
 new = (struct node *)malloc(sizeof(struct node));
 new->data = x;
 new->link = temp->link;
 temp->link = new;
 printf("\nInserted %d at position %d", x, pos);
 count++;
 }
}

void deleteAtBegin()
{
 if (head == NULL)
 {
 printf("\nLinked list is empty");
 return;
 }

 struct node *temp = head;
 head = temp->link;
 printf("\nDeleted %d from the beginning", temp->data);
 free(temp);
 count--;
}

void deleteAtEnd()
{
 if (head == NULL)
 {
 printf("\nLinked list is empty");
 return;
 }

 if (head->link == NULL)
 {
 deleteAtBegin();
 }
 else
 {
 struct node *prev = head;
 struct node *temp = head->link;
 while (temp->link != NULL)
 {
 temp = temp->link;
 prev = prev->link;
 }
 prev->link = NULL;
 printf("\nDeleted %d from the end", temp->data);
 free(temp);
 count--;
 }
}

void deleteAtPosition(int pos)
{
 if (head == NULL)
 {
 printf("\nLinked list is empty");
 return;
 }

 if (pos <= 0 || pos > count)
 {
 printf("Invalid position, deletion not possible");
 return;
 }
 if (pos == 1)
 deleteAtBegin();
 else if (pos == count)
 deleteAtEnd();
 else
 {
 struct node *prev = head;
 struct node *temp = head->link;
 for (int i = 2; i < pos; i++)
 {
 temp = temp->link;
 prev = prev->link;
 }
 prev->link = temp->link;
 printf("\nDeleted %d from position %d", temp->data, pos);
 free(temp);
 count--;
 }
}

void display()
{
 if (head == NULL)
 {
 printf("\nNo elements in the linked list");
 return;
 }

 struct node *temp = head;
 printf("\nElements in the linked list are: \n");
 printf("head");
 while (temp != NULL)
 {
 printf(" --> %d", temp->data);
 temp = temp->link;
 }
 printf("\n");
}

void search(int key)
{
 if (head == NULL)
 {
 printf("\nNo elements in the linked list");
 return;
 }

 struct node *temp = head;
 int flag = 1, pos = 1;
 printf("\nSearching %d: ", key);
 while (temp != NULL)
 {
 if (temp->data == key)
 {
 printf("\nFound at position: %d", pos);
 flag = 0;
 }
 temp = temp->link;
 pos++;
 }
 if (flag)
 printf("Key not found");
 printf("\n");
}

