Queue Using Linked List Data Structure
Definition
A queue is a linear data structure that follows the First In, First Out (FIFO) principle. In a linked list implementation of a queue, each element is represented by a node. The queue maintains two pointers: the front pointer, which points to the first node, and the rear pointer, which points to the last node.
Operations
1. Enqueue: Add an element to the end of the queue (i.e., insert a node at the end of the linked list).
2. Dequeue: Remove and return the element from the front of the queue (i.e., delete the head node of the linked list).
3. Front/Peek: Return the front element without removing it (i.e., return the data of the head node).
4. isEmpty: Check if the queue is empty (i.e., check if the head node is null).
Pros and Cons
Pros:
· Dynamic Size: The queue can grow and shrink as needed, so there is no need to define a fixed size.
· Efficient Memory Usage: Memory is allocated as needed, so there is no wasted space.
· No Overflow: There is no risk of overflow unless the system runs out of memory.
· Efficient Dequeue: Dequeue operation is efficient as it doesn't require shifting elements like in an array-based queue.
Cons:
· Memory Overhead: Each element in the queue requires additional memory for the pointer/reference.
· Complexity: Linked list operations are generally more complex than array operations due to the use of pointers/references.
· Cache Performance: Linked lists have poorer cache performance compared to arrays because nodes are not stored contiguously in memory.
Applications
· Task Scheduling: Used in operating systems for scheduling tasks (e.g., CPU scheduling).
· Buffer Management: Used in buffering data streams (e.g., IO Buffers).
· Breadth-First Search: Utilized in graph algorithms for traversing or searching through graph data structures.
· Print Queue Management: Used in managing print jobs in printers.
· Handling Requests: Used in servers to handle incoming requests in the order they are received.

